Containers for Cations

Membership Rules for a Molecular Box: The Admission Process and Protection Provided to Guest Molecules**

Sodio C. N. Hsu, Maya Ramesh, James H. Espenson, and Thomas B. Rauchfuss*

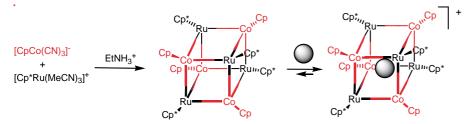
Molecular containers are the smallest possible agents for sensing, sorting, and sequestering ions and molecules.^[1] Molecular cages based on transition-metal vertices often easily self-assemble, and those with inorganic frameworks are of special interest because their rigidity, uncommon in organic ligands,^[2–5] could give rise to high selectivity with respect to guest size.

Prussian Blue (PB) and its variants^[6-8] are insoluble cyanometallate polymers consisting of boxlike subunits that exhibit ion-exchange behavior. We and others have previously described molecular PB analogues with encapsulated cations.^[9-12] Lacking so far, however, are examples of empty (or voided) ionophilic boxes, which could provide insights into the ion-inclusion process, which is fundamentally relevant to the behavior of PB analogues and the design of a new class of ion-sequestering agents.^[13]

We have previously reported that the cage $[Cs\subset\{CpCo(CN)_3\}_4(Cp^*Ru)_4]^+$ ($Cs\subset Co_4Ru_4^+$; $Cp^*=C_3Me_5$, $Cp=C_5H_5$) forms by the cesium-ion templated condensation of $[CpCo(CN)_3]^-$ and $[Cp^*Ru(NCMe)_3]^+$. When the cesium ion is omitted from this recipe, an intractable mixture is obtained. Herein we report that when mediated by the templating ion $EtNH_3^+$ self-assembly indeed proceeds to give the empty molecular box $[\{CpCo(CN)_3\}_4(Cp^*Ru)_4]$ (Co_4Ru_4) in high purity and good yield (Figure 1).

In contrast to $EtNH_3^+$, $MeNH_3^+$ templates self-assembly with inclusion to form $MeNH_3 \subset Co_4Ru_4^+$. The high selectivity of these molecular containers is highlighted by comparison of the van der Waals volumes of the $MeNH_3^+$ (43.3 ų) and $EtNH_3^+$ (60.2 ų) ions.

In addition to ESI-MS and 1H NMR spectroscopy, $\mathbf{Co_4Ru_4}$ was also characterized crystallographically, the results of which indicate that the cage interior is indeed empty, despite its large volume ($\approx 135 \ \text{Å}^3$ based on internuclear distances). The availability for the first time of an empty ionophilic box enables the study of ion binding with respect to kinetic and


[*] Prof. Dr. T. B. Rauchfuss, Dr. S. C. N. Hsu, Dr. M. Ramesh Department of Chemistry University of Illinois at Urbana-Champaign Urbana, IL 61801 (USA) Fax: (+1) 217-333-2685 E-mail: rauchfuz@uiuc.edu

Prof. Dr. J. H. Espenson Ames Laboratory, Department of Chemistry Iowa State University, Ames, IA 50011 (USA)

[**] This research was funded by the US Department of Energy.
Supporting information (kinetic data) for this article is available on the WWW under http://www.angewandte.org or from the author.

DOI: 10.1002/ange.200219562

Zuschriften

thermodynamic selectivities. We found that $\mathbf{Co_4Ru_4}$ readily binds K+, Rb+, Cs+, Tl+, NH₄+, MeNH₃+, and N₂H₅+ ions (see Figure 1) but not the smaller Na+ ion $(r_{\text{ioni}c} = 1.16 \text{ Å})$ or divalent cations.

The kinetic selectivity of Co₄Ru₄ was probed by treatment of THF solutions of Co_4Ru_4 with an MeCN solution equimolar in KPF₆ and CsOTf (OTf = CF₃SO₃) and then monitoring the process by NMR spectroscopy or ESI-MS spectrometry. These reactions rapidly formed K⊂Co₄Ru₄+ together with $\approx 3\%$ Cs \subset Co₄Ru₄+. Whereas the K+ ion inserts more rapidly, Cs⊂Co₄Ru₄+ is the only complex detected after seven days (Figure 2a, b). We propose that the smaller size of the K⁺ ion $(r_{\text{ionic}} = 1.52 \text{ Å})$ facilitates its insertion, but as a result of a better fit (ionic radius versus box volume) and affinity for π CN ligands,^[15,16] the Cs⁺ ion ($r_{\text{ionic}} = 1.81 \text{ Å}$) is thermodynamically preferred. In another ion-competition experiment, the cation of NH₄PF₆ $(r_{\text{ionic}} \approx 1.75 \text{ Å})^{[17]}$ was shown to insert at approximately the same rate as that of CsOTf, but subsequent equilibration is immeasurably slow. For MeNH₃BF₄ versus CsOTf, the MeNH₃+ ion inserts faster than the Cs+ ion, although there is a subsequent slower conversion into $Cs \subset Co_4Ru_4^+$ (Figure 2 c, d).

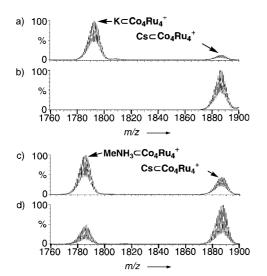


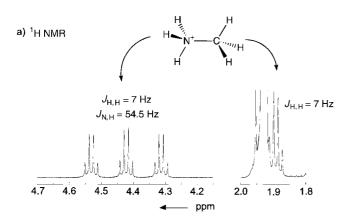
Figure 2. Electrospray mass spectra for a 0.0057 M MeCN solution of Co_4Ru_4 upon treatment with 2 equivalents each of KPF₆ and CsOTf after 10 min (a) and after seven days (b), and after treatment with two equivalents each of MeNH₃BF₄ and CsOTf after 10 min (c) and after seven days (d).

In terms of mechanism, the collective evidence points to ion insertion into $\mathbf{Co_4Ru_4}$ through a $\{\mathbf{Co_2Ru_2}(\mathbf{CN})_4\}$ "window". The differing kinetic and thermodynamic selectivities of $\mathbf{Co_4Ru_4}$ (see above) can best be explained if the cage remains intact during ion insertion. Labeling experiments are consistent with this view. We found that THF solutions of $\mathbf{Co_4Ru_4}$ and its close analogue $[\{\mathbf{CpCo}(\mathbf{CN})_3\}_4\{(\mathbf{C_5Me_4Et})\mathbf{Ru}\}_4]$ $(\mathbf{Co_4Ru_4}')$ reacted with \mathbf{CsOTf} to give $\mathbf{Cs}\subset\mathbf{Co_4Ru_4}'$ (m/z: 1886) and $\mathbf{Cs}\subset\mathbf{Co_4Ru_4}'+$ (m/z: 1942), Products of scrambling, such as

respectively. Products of scrambling, such as $[Cs\subset\{CpCo(CN)_3\}_4(Cp^*Ru)_3\{(C_5Me_4Et)Ru\}]^+$ were not observed. The results of these labeling experiments could also be explained if insertion of the Cs+ ion occurred by rupture of a single Ru–N bond followed by admission of the Cs+ ion through this opening in an otherwise intact box. Arguing against labile Ru–N linkages is the inertness of $\mathbf{Co_4Ru_4}$ towards $\mathbf{Et_4NCN}$; it is very unlikely that any exposed ruthenium site could resist attack by the $\mathbf{CN^-}$ ion, an extremely potent nucleophile.

Kinetic measurements revealed that the rate of conversion of $K \subset Co_4Ru_4^+$ into $Cs \subset Co_4Ru_4^+$ slowed during the course of the reaction, which reflects the build-up of free K^+ ions that increasingly compete with the entering Cs^+ ions [Eq. (1) and (2)].

$$K \subset Co_4Ru_4^+$$
 $\xrightarrow{k_1}$
 $K^+ + Co_4Ru_4$ (1)


$$Cs^{+} + Co_{4}Ru_{4} \xrightarrow{k_{2}} Cs \subset Co_{4}Ru_{4}^{+}$$
 (2)

A dissociative ion-exchange process is indicated, whereby the rate-limiting step is loss of the K^+ ion from $K \subset Co_4Ru_4^+$ followed by uptake of the Cs+ ion. A rate equation for the kinetic model describing this two-step process can be formulated, provided k_{-1}/k_2 is known (details in Supporting Information). The ratio of the rates of insertion of K+ and Cs+ ions into Co_4Ru_4 , k_{-1}/k_2 , was determined from competition experiments (see above), the rates of ion insertion into Co₄Ru₄ being fast relative to the rate of ion exchange. Plots of $\{(k_{-1}/k_2)[\mathbf{K}\subset\mathbf{Co_4Ru_4}^+]-a\ln[\mathbf{K}\subset\mathbf{Co_4Ru_4}^+]\}$ versus time were linear under conditions where $[Cs^+]_0 > 10[\mathbf{K} \subset \mathbf{Co_4Ru_4}^+]_0$. Four sets of kinetic measurements allowed us to determine k_1 = $1.2 \times 10^{-4} \,\mathrm{s}^{-1}$ (60 °C). The rate of formation of $\mathbf{K} \subset \mathbf{Co_4 Ru_4}^+$ (k_{-1}) was shown to be 135 s⁻¹m⁻¹, even at room temperature. From k_1 and this lower bound for k_{-1} , K_K , the binding constant for K⁺ ions by Co_4Ru_4 (defined in this case as k_{-1}/k_1), is approximately 106. Previous competition experiments on $[M{\subset}\{Cp^*Rh(CN)_3\}_4\{Mo(CO)_3\}_4]^{3-}$ (which cannot be obtained as a voided box) showed that the Cs+ ion binds $> 10^4$ more strongly than the K+ ion;^[12] extrapolating to the present case, we estimate that K_{Cs} is $> 10^{10}$.

The slow ion-exchange rates and cagelike structure suggest that Co_4Ru_4 should chemically protect its guests. To assess this protection, we examined the H–D exchange of the guest in $NH_4 \subset Co_4Ru_4^+$. The ¹H NMR signal for

www.angewandte.de

NH₄⊂Co₄Ru₄+ appears as a 1:1:1 triplet, indicative of the absence of proton exchange. The signal is unaffected by exposure of the compound to D₂O for several hours, whereas ammonium ions characteristically undergo H-D exchange at diffusion-limited rates at neutral pH value.[18] H-D exchange is accelerated somewhat in the presence of free ND₄BF₄, and is complete in around 25 h at room temperature in MeCN solution. Deuteration occurs by proton transfer, not by exchange of the ammonium ions since we can detect the initial formation of NDH3 CO4Ru4+, as indicated by its distinctive coupling pattern in the ¹H NMR spectrum. The guest cation in NH₄⊂Co₄Ru₄+ is completely unaffected by quinuclidine, which is a stronger base than ammonia (pK_a = 19.56 vs. 16.46).[19] 14N and 1H NMR measurements (Figure 3) show that H-D exchange between ND₄+ and MeNH₃⊂ Co₄Ru₄+ is also slow.

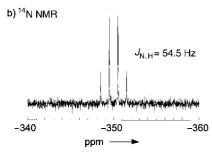


Figure 3. a) 500 MHz 1 H NMR spectrum of MeNH₃ \subset Co₄Ru₄ $^+$ BF₄ $^-$, b) 14 N NMR spectrum of MeNH₃ \subset Co₄Ru₄ $^+$ BF₄ $^-$ (in CD₃CN).

To summarize, an ionophilic molecular box has been synthesized with the aid of a templating ion. The kinetic and thermodynamic selectivities are distinctive, in large measure because of the pronounced effects of atomic size on the binding and ion-exchange rates. The cage indeed shields guest ions from reagents in the surrounding solution.

Experimental Section

 $\mathbf{Co_4Ru_4}$: A solution of PPN[CpCo(CN)₃] (290 mg, 0.39 mmol; PPN = triphenyl[(triphenylphosphanylidene)amino]phosphonium) and EtNH₃BF₄ (13 mg, 0.10 mmol) in MeCN (50 mL) was added to a solution of [Cp*Ru(NCMe)₃]PF₆ (197 mg, 0.39 mmol) in MeCN (20 mL). After 5 h, the red microcrystals were collected and then

extracted into Et₂O (50 mL). Evaporation gave dark red microcrystals, yield: 140 mg (80 %). ^{1}H NMR ([D_8]THF; 500 MHz): $\delta = 1.67$ (s, 60 H), 5.35 ppm (s, 20 H). ESI-MS (*m/z*): 1754 ([H{CpCo(CN)}_{3}]_{4}(Cp*Ru)_{4}]^{+}). FAB (*m/z*): 1753 ([{CpCo(CN)}_{3}]_{4}(Cp*Ru)_{4}]^{+}). Elemental analysis (%) calcd for C₇₂H₈₀Co₄N₁₂Ru₄: C 49.32, H 4.60, N 9.59; found: C 49.01, H 4.93, N 9.78

MeNH₃⊂**Co**₄**Ru**₄: A solution of PPN[CpCo(CN)₃] (290 mg, 0.39 mmol) and MeNH₃BF₄ (12 mg, 0.10 mmol) in MeCN (50 mL) was added to a solution of [Cp*Ru(NCMe)₃]PF₆ (197 mg, 0.39 mmol) in MeCN (20 mL). After 2 h, the solvent volume was reduced (to approximately 10 mL) to produce dark-red microcrystals of [MeNH₃⊂{CpCo(CN)₃}₄(Cp*Ru)₄]PF₆, which were washed with cold MeCN (2 mL); yield: 135 mg (71%). IR (KBr): $\bar{\nu}_{CN}$ = 2158, 2127 cm⁻¹; ¹H NMR (CD₃CN): δ = 1.66 (s, 60 H), 1.89 (q, $J_{H,H}$ = 7 Hz, 3 H; CH_3 NH₃+), 4.09 (q of t, $J_{H,H}$ = 7 Hz, $J_{N,H}$ = 55 Hz, 3 H; CH₃NH₃+), 5.57 ppm (s, 20 H); ¹⁴N NMR ([D₆]acetone, vs. MeCN;): δ = −71.65 (Co-CN-Ru), −349.9 ppm (q, CH₃NH₃+, $J_{N,H}$ = 55 Hz); ESI-MS m/z 1786 ([MeNH₃⊂{CpCo(CN)₃]₄(Cp*Ru)₄]+); elemental analysis (%) calcd for C_{73} H₈₆Co₄F₆N₁₃PRu₄: C 45.42, H 4.49, N 9.43; found: C 45.36, H 4.66, N 9.57. The same species can be synthesized by treatment of a solution of **Co₄Ru₄** with MeNH₃BF₄.

Ion Competition Experiments: $\mathbf{Co_4Ru_4}$ with $\mathbf{CsO_3SCF_3}$ versus $\mathbf{KPF_6}$. (similar for $\mathbf{Cs^+}$ versus $\mathbf{MeNH_3^+}$ and $\mathbf{Cs^+}$ versus $\mathbf{NH_4^+}$). A solution of $\mathbf{Co_4Ru_4}$ (10 mg, 0.0057 mmol) in THF (10 mL) was added in one portion to a well-stirred homogeneous solution of both $\mathbf{CsO_3SCF_3}$ (3.2 mg, 0.0114 mmol) and $\mathbf{KPF_6}$ (2.1 mg, 0.0114 mmol) in MeCN (1 mL). The reaction was monitored by ESI-MS (sample concentration = 10^{-11} mol μ L⁻¹). Experiments were run in duplicate. Kinetics of ion exchange: The differential and integrated rate laws for the kinetic model in Equations (1) and (2) are: $\mathbf{d}[\mathbf{Cs} \subset \mathbf{Co_4Ru_4^+}]/\mathbf{d}t = (k_1[\mathbf{K} \subset \mathbf{Co_4Ru_4^+}][\mathbf{Cs^+}])/\{(k_1/k_2)[\mathbf{K^+}] + [\mathbf{Cs^+}]\}$ integrating:

 $(k_{-1}/k_2)[\mathbf{K} \subset \mathbf{Co_4Ru_4}^+] - a(\ln[\mathbf{K} \subset \mathbf{Co_4Ru_4}^+]) = -k_1[\mathbf{Cs^+}]t + X$

 $a = [Cs^+]_0 + (k_{-1}/k_2)[K \subset Co_4Ru_4^+]_0$

 $k_{-1}/k_2 = 32.8$ (in THF:6 MeCN)

 $X = (k_{-1}/k_2)[\mathbf{K} \subset \mathbf{Co_4Ru_4}^+]_0 - a(\ln[\mathbf{K} \subset \mathbf{Co_4Ru_4}^+]_0)$

The value of $k_{-1}/k_2 = 32.8$ was obtained by addition of a solution of $\mathbf{Co_4Ru_4}$ to a solution equimolar in KPF₆ and CsOTf (where $[K^+]_0$ = $[Cs^+]_0 \gg [Co_4Ru_4]_0$) in 1:6 THF:CD₃CN solution followed by integration of the C_5H_5 NMR signals at $\delta = 5.605$ and 5.609 ppm. The measurements were taken for $[Co_4Ru_4]$:($[KPF_6]$ or [CsOTf]) = 1:2, 1:3, and 1:4. Kinetic rate measurements were monitored for 12 h at 60°C in 1:6 THF:CD₃CN solvent mixture. All four experiments employed $2.21 \times 10^{-3} \text{ M} \left[\mathbf{K} \subset \mathbf{Co_4 Ru_4^+} \right]_0$; measurements where $\left[\mathbf{Cs^+} \right]_0$ was 0.0221, 0.0663 m, 0.0884 m, and 0.1105 m gave $k_1 = 1.2 \times 10^{-4} \,\mathrm{s}^{-1}$. Crystal data: $C_{90}H_{107}Co_4N_{21}Ru_4$, $M_r2122.97$, cubic, I23; a=b=c=18.014(3) Å; $\alpha = \beta = \gamma = 90^{\circ}$; $V = 5872(3) \text{ Å}^3$; Z = 2; $\rho_{\text{calcd}} =$ 1.206 Mg m⁻³, F(000) = 2156, 175 parameters: R1 = 0.0408, wR2 = 0.04080.963, GOF = 1.007 for all 1798 data $(I > 2\sigma(I))$. Single crystals of $\textbf{Co_4}\textbf{Ru_4}$ were mounted on glass fibers using Paratone-N (Exxon) and were analyzed on a Siemens Platform/CCD automated diffractometer at 193 K. Data were processed using SAINT. $^{[20]}$ The structures were solved using direct methods and refined using full-matrix leastsquares analysis on F^2 using the program SHELXTL.^[21] Hydrogen atoms were fixed in idealized positions with thermal parameters 1.2 times those of the attached carbon atoms. Data were corrected for absorption on the basis of integration. CCDC-187755 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

Received: June 19, 2002 Revised: January 15, 2003 [Z19562]

Zuschriften

Keywords: cage compounds · cations · cobalt · cyanide · host–guest systems · ruthenium

- [1] D. J. Cram, Nature 1992, 356, 29.
- [2] J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995.
- [3] F. Vögtle, Supramolecular Chemistry, Wiley, New York, 1991.
- [4] F. Hof, S. L. Craig, C. Nuckolls, J. Rebek, Jr., Angew. Chem. 2002, 114, 1556; Angew. Chem. Int. Ed. 2002, 41, 1488.
- [5] P. V. Bonnesen, T. J. Haverlock, N. L. Engle, R. A. Sachleben, B. A. Moyer, ACS Symp. Ser. 2000, 757, 26.
- [6] A. G. Sharpe, *The Chemistry of Cyano Complexes of the Transition Metals*, Academic Press, London, **1976**.
- [7] F. Herren, P. Fischer, A. Ludi, W. Hälg, *Inorg. Chem.* 1980, 19, 956.
- [8] K. R. Dunbar, R. A. Heintz, Prog. Inorg. Chem. 1997, 45, 283.
- [9] K. K. Klausmeyer, T. B. Rauchfuss, S. R. Wilson, Angew. Chem. 1998, 110, 1808; Angew. Chem. Int. Ed. 1998, 37, 1694.
- [10] S. M. Contakes, K. K. Klausmeyer, R. M. Milberg, S. R. Wilson, T. B. Rauchfuss, *Organometallics* **1998**, *17*, 3633.
- [11] J. L. Heinrich, P. A. Berseth, J. R. Long, Chem. Commun. 1998, 1231.
- [12] K. K. Klausmeyer, S. R. Wilson, T. B. Rauchfuss, J. Am. Chem. Soc. 1999, 121, 2705.
- [13] K. L. Nash, R. E. Barrans, R. Chiarizia, M. L. Dietz, M. P. Jensen, P. G. Rickert, B. A. Moyer, P. V. Bonnesen, J. C. Bryan, R. A. Sachleben, *Solvent Extr. Ion Exch.* 2000, 18, 605.
- [14] S. M. Contakes, M. L. Kuhlman, M. Ramesh, S. R. Wilson, T. B. Rauchfuss, Proc. Natl. Acad. Sci. USA 2002, 99, 4889.
- [15] J. C. Bryan, K. Kavallieratos, R. A. Sachleben, *Inorg. Chem.* 2000, 39, 1568.
- [16] G. W. Gokel, L. J. Barbour, R. Ferdani, J. Hu, Acc. Chem. Res. 2002, 35, 878.
- [17] R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751.
- [18] C. L. Perrin, T. J. Dwyer, P. Baine, J. Am. Chem. Soc. 1994, 116, 4044
- [19] K. Izutsu, Acid-Base Dissociation Constants in Dipolar Aprotic Solvents, Vol. 35, Blackwell, Oxford, 1990.
- [20] Bruker AXS, Inc., Madison, WI (USA), 2001.
- [21] G. M. Sheldrick, University of Göttingen, Göttingen (Germany), 1997.